OPBT film for Industrial Purpose

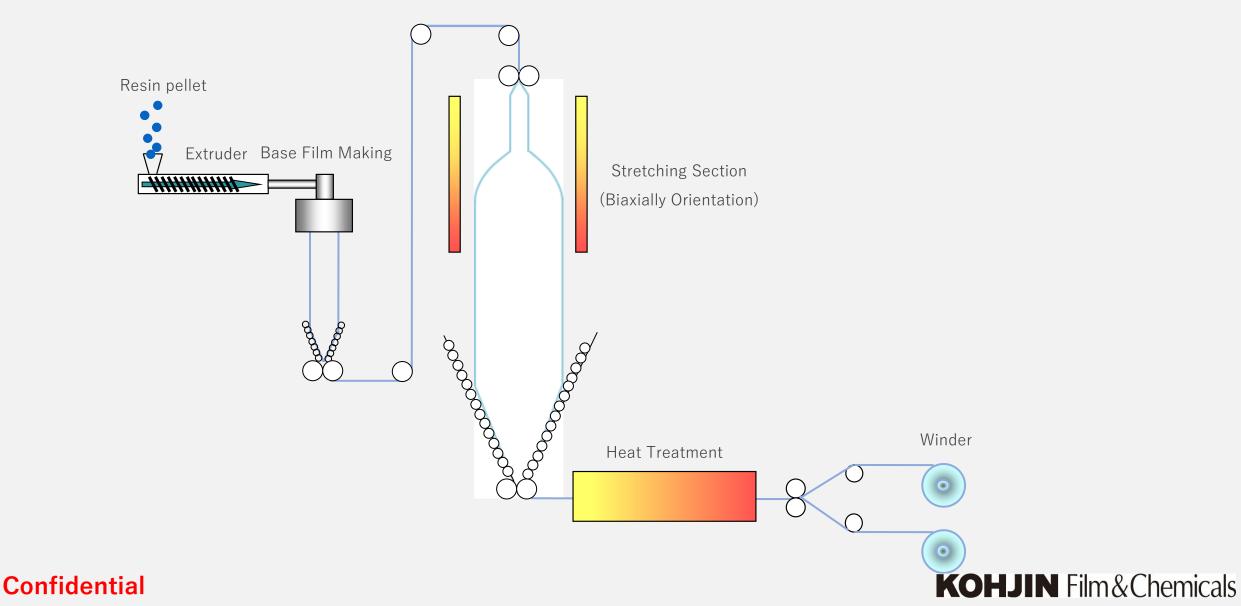
Our OPBT Film Overview

	Pinhole Resistance		Heat Resistance	Cold Resistance	Releasability		Formability	Secondary Processability	Low Elution	✓ \		
	Impact Strength	Needle Strength	Flexing	Abrasion	Melting Point/Shrinkage under high temp.	Strength in frozen env.	ı	Heat Formability	Cold Formability	Printing /Lamination	Amount of Oligomer	(
OPBT (15μ)	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	✓
ONY (15μ)	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigcirc	\bigtriangleup	\bigtriangleup	\checkmark
OPET (16μ)	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigcirc	\bigcirc	\bigcirc	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigcirc	\bigcirc	

We are the first manufacturer to introduce Biaxially Oriented PBT film

applied by our original Tubular simultaneous biaxially oriented method

✓ Strong in Pinhole

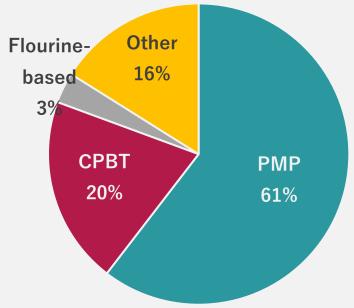

 Excellent Formability due to our original Tubular method

Heat/Cold resistance, Secondary Processability, Low Elution

\bigcirc : Superior to other \bigcirc : Same as other △ : Inferior to other **Confidential**

Our Tubular Method

Properties/Applications(for food packaging)


		OPBT	ONY	OPET	NO.	Application	n Contents	Original Lamination Structure	OPBT Lamination Structure	Reason OPBT being chosen
Thickness (μ) Haze (%)		15 5.4	15 2.6	16 2.8	1	Microwave	Curries, etc	VMOPET(12)//ONY(15) //CPP	VMOPET(12)// <mark>OPBT(15)</mark> //CPP	Microwavable
Tensile Strength	MD TD	210 220	280 300	170 180	2	Retort	Curry 200g	OPET(12)//ONY(15) //AL//CPP	OPBT(15)//AL//CPP	Reducing total thickness
Impact Strength (J) Needle Strength (N)		1.1 10	1.5 11	0.5 8	3	Packing bag for Heavy Load	Red Beans (1~5kg)	OPET(12)//ONY(15)//LL	OPBT(15)//ONY(15)//LL	Pinhole Resistance
Gelboflex Test (5°C×40%RH×500times)		1	12	120	4	Frozen food	Fish cake (1kg)	ONY(25)//LL	OPBT(20)//LL	Pinhole Resistance in frozen env,
Shrinkage in Hot Water 150°C (%)	MD TD	2.4 0.3	0.8 0.8	1.4 0.0	5	Frozen/Lid	l Frozen Food	OPET(12)//ONY(15)//LL	OPBT(20)//LL	Reducing total thickness
Water Vaper		4.0	010	40	6	Lids	Portion	特殊OPET(25)//PS sheet	OPBT(15)//PS sheet	Formability
Transmission rate (g∕m2 • 24hr)		49	310	42	7	Lids	Thermoforming	CPP(40)//barrierONY(15) /EP	[/] <mark>OPBT(15)</mark> //BarrierONY(15)//EF	Heat resistance、 Packaging , Reducing total thickness
Oxygen Transmission Rate		110	23	81	8	Others	Konjac	OPET(12)//ONY(15)//LL	OPBT(15)//LL	Reducing total thickness
(cc/m2 ⋅ 24hr) <u>※23°C×50%RH</u>					_				KOHJIN Film	&Chemicals

Expected Application 1: FPC Release Film

Flexible Printed Circuits

It is the process material to protect the circuit of the coverlay film in the FPC manufacturing process.

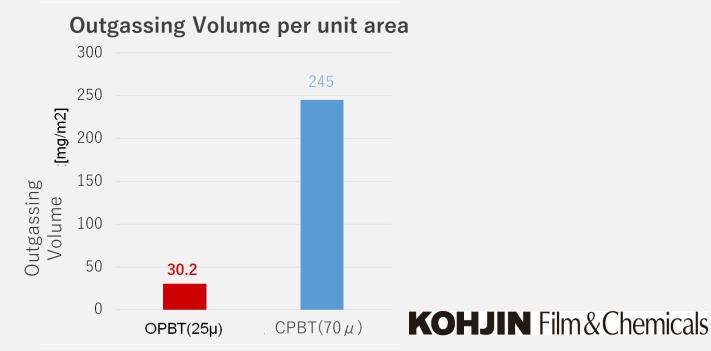
Weight of material used

Confidential Reference: 富士キメラ総研 機能性高分子フィルムの現状と将来展望(2015)

- ✓ Heat Resistance during high temp, process
- ✓ Releasability from a product after pressing
- ✓Irregular Surface Followability
- Low Outgassing Property

KOHJIN Film&Chemicals

Expected Application 1: FPC Release Film

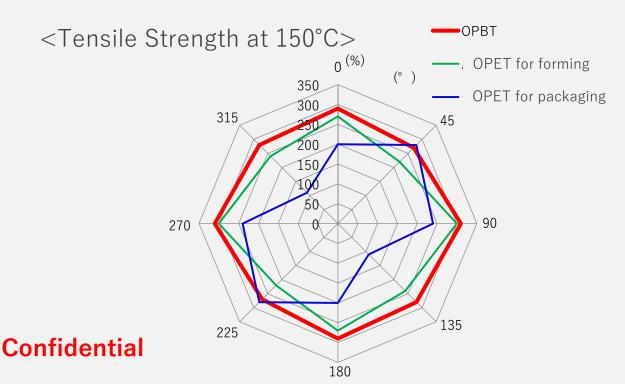

	Heat Resistance	Releasability	Followability	Low Outgassing	Cost	Thickness (μ m)
OPBT	0	\bigcirc	0	O	\bigcirc	25(max)
CPBT	\bigcirc		\bigcirc	\bigcirc	\bigcirc	70
PMP	\bigcirc	\bigcirc	\bigcirc	\bigtriangleup	\bigtriangleup	50

<Expected Benefits>

- Low Outgassing
- Stable Procurement
- Reducing Cost(vsPMP)

XSingle layer type

Film	Water drop				
	contact angle (°)				
OPBT (25 <i>µ</i>)	80.9				
$CPBT(70 \mu)$	60.9				
PMP (50μ)	101				



Expected Application 2: Decorative Transfer Film

XUnder evaluation of decorative transfer film for interior parts of vehicle.

(Reducing CO2 emission by replacing from painting to decorative transfer film)

✓ Excellent Followability on curved surface

<Expected Benefits>

Improve transferring process

%Being decorative transferring possible on difficult curved surface

Reducing a total thickness

KOHJIN Film&Chemicals

Expected Application ③: Laminated pouch LIB

 $\ensuremath{\mathbbmm}$ Under evaluation by customers in overseas especially for EV application

✓ **Cold Formability** as same level as current product

Improve productivity by Reducing One Lamination

✓ %Reducing one layer : OPET//ONY→OPBT

	Cold Formability	Productivity	Long-term Reliability	Electrolyte Solution Resistance
OPBT	\bigcirc	\bigcirc	\bigcirc	\bigcirc
ONY (for 3C)	\bigcirc	Ô	\bigtriangleup	\triangle
OPET//ONY (for EV)	\bigcirc	\bigtriangleup	\bigcirc	O

OPET (12 μ)	
ONY (15μ)	
AL (40μ)	
CPP (50 μ)	

%Lamination Structure for EV

<Expected Benefits>

- Improve Productivity
- Increase long-term reliability

KOHJIN Film&Chemicals

Expected Application ④: Building Material

XUnder evaluation on building rooftop construction materials, housing waterproofing materials, frozen internal wall materials, etc

Improve Processability during construction (moderate flexibility,

Strong in pinhole during winter season)

✓ **Durability** after construction (heat/cold resistance,

oil/chemical resistance, reduction of aging)

	Flexibility	Pinhole Resistance	Heat/Cold Resistance	Oil/Chemical Resistance	Thickness (μ m)
OPBT	0	Ô	Ô	Ô	15~25
OPET	\bigtriangleup	\bigcirc	\bigcirc	\bigcirc	25~70
Olefin Films	\bigcirc	\bigtriangleup	\bigtriangleup	\bigtriangleup	15~50

<Expected Benefits>

- Reduction of processing losses
- Improve of durability
- Reducing film thickness

KOHJIN Film&Chemicals

Expected Merits 5: Film Laminated Steel Sheet

XUnder evaluation on the exterior side of canned reel/cover materials

(Reducing environmental impact by replacement from painting to laminated film)

✓ Strong in **Retort Resistance**

✓ Excellent processability in steel plate thermal lamination process

	Retort Resistance	Processability	Thickness (μ m)
OPBT	Ô	Ô	15
СРВТ	\bigcirc	$\triangle \sim \bigcirc$	50~70
OPET	\bigtriangleup	\bigcirc	-

<Expected Benefits>

- Reduction of processing losses
- Reducing film thickness

KOHJIN Film&Chemicals